3.784 \(\int \frac{1}{\sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=188 \[ -\frac{i}{20 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}-\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac{i}{10 a d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{i}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}} \]

[Out]

((-1/8 - I/8)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt
[Tan[c + d*x]])/(a^(5/2)*d) + (I/5)/(d*Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2)) + (I/10)/(a*d*Sqrt[Cot
[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)) - (I/20)/(a^2*d*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.504994, antiderivative size = 188, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.214, Rules used = {4241, 3557, 3596, 12, 3544, 205} \[ -\frac{i}{20 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}-\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac{i}{10 a d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{i}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2)),x]

[Out]

((-1/8 - I/8)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt
[Tan[c + d*x]])/(a^(5/2)*d) + (I/5)/(d*Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2)) + (I/10)/(a*d*Sqrt[Cot
[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)) - (I/20)/(a^2*d*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3557

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> -Sim
p[(b*(a + b*Tan[e + f*x])^m*Sqrt[c + d*Tan[e + f*x]])/(2*a*f*m), x] + Dist[1/(4*a^2*m), Int[((a + b*Tan[e + f*
x])^(m + 1)*Simp[2*a*c*m + b*d + a*d*(2*m + 1)*Tan[e + f*x], x])/Sqrt[c + d*Tan[e + f*x]], x], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && IntegersQ[2
*m]

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}} \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{\tan (c+d x)}}{(a+i a \tan (c+d x))^{5/2}} \, dx\\ &=\frac{i}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}-\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{i a-4 a \tan (c+d x)}{\sqrt{\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx}{10 a^2}\\ &=\frac{i}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac{i}{10 a d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}-\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\frac{9 i a^2}{2}-3 a^2 \tan (c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}} \, dx}{30 a^4}\\ &=\frac{i}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac{i}{10 a d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}-\frac{i}{20 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}-\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{15 i a^3 \sqrt{a+i a \tan (c+d x)}}{4 \sqrt{\tan (c+d x)}} \, dx}{30 a^6}\\ &=\frac{i}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac{i}{10 a d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}-\frac{i}{20 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}-\frac{\left (i \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{8 a^3}\\ &=\frac{i}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac{i}{10 a d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}-\frac{i}{20 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}-\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{4 a d}\\ &=-\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{a^{5/2} d}+\frac{i}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac{i}{10 a d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}-\frac{i}{20 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.50964, size = 167, normalized size = 0.89 \[ \frac{e^{-6 i (c+d x)} \sqrt{\frac{a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt{\cot (c+d x)} \left (-2 e^{2 i (c+d x)}+2 e^{4 i (c+d x)}+e^{6 i (c+d x)}-5 e^{5 i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )-1\right )}{20 \sqrt{2} a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2)),x]

[Out]

(Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*(-1 - 2*E^((2*I)*(c + d*x)) + 2*E^((4*I)*(c + d*x)) +
 E^((6*I)*(c + d*x)) - 5*E^((5*I)*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 +
E^((2*I)*(c + d*x))]])*Sqrt[Cot[c + d*x]])/(20*Sqrt[2]*a^3*d*E^((6*I)*(c + d*x)))

________________________________________________________________________________________

Maple [B]  time = 0.415, size = 544, normalized size = 2.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x)

[Out]

(1/40-1/40*I)/d/a^3*(-20*I*cos(d*x+c)^2*sin(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2
))*2^(1/2)+4*I*cos(d*x+c)^2*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+10*I*cos(d*x+c)*sin(d*x+c)*arctan((1/
2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)-20*2^(1/2)*cos(d*x+c)^3*arctan((1/2+1/2*I)*((cos(d
*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))+5*I*2^(1/2)*sin(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2
)*2^(1/2))-4*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*cos(d*x+c)^2+10*2^(1/2)*cos(d*x+c)^2*arctan((1/2+1/2
*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))+I*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*sin(d*x+c)+15*2^(1/2)*cos(d
*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))-((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*sin(d*x+
c)-5*2^(1/2)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)))*cos(d*x+c)*(a*(I*sin(d*x+c)+cos(d*
x+c))/cos(d*x+c))^(1/2)/(4*I*sin(d*x+c)*cos(d*x+c)^2+4*cos(d*x+c)^3-I*sin(d*x+c)-3*cos(d*x+c))/sin(d*x+c)/(cos
(d*x+c)/sin(d*x+c))^(1/2)/((cos(d*x+c)-1)/sin(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 1.55481, size = 1060, normalized size = 5.64 \begin{align*} -\frac{{\left (10 \, a^{3} d \sqrt{\frac{i}{8 \, a^{5} d^{2}}} e^{\left (6 i \, d x + 6 i \, c\right )} \log \left (\frac{1}{4} \,{\left (4 \, a^{3} d \sqrt{\frac{i}{8 \, a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} - 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 10 \, a^{3} d \sqrt{\frac{i}{8 \, a^{5} d^{2}}} e^{\left (6 i \, d x + 6 i \, c\right )} \log \left (-\frac{1}{4} \,{\left (4 \, a^{3} d \sqrt{\frac{i}{8 \, a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} - 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}{\left (e^{\left (6 i \, d x + 6 i \, c\right )} + 2 \, e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, e^{\left (2 i \, d x + 2 i \, c\right )} - 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-6 i \, d x - 6 i \, c\right )}}{40 \, a^{3} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/40*(10*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(6*I*d*x + 6*I*c)*log(1/4*(4*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(2*I*d*x +
2*I*c) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))
*(e^(2*I*d*x + 2*I*c) - 1)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 10*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(6*I*d*x + 6*
I*c)*log(-1/4*(4*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(2*I*d*x + 2*I*c) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*s
qrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*(e^(2*I*d*x + 2*I*c) - 1)*e^(I*d*x + I*c))*e^(-I*d*
x - I*c)) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) -
1))*(e^(6*I*d*x + 6*I*c) + 2*e^(4*I*d*x + 4*I*c) - 2*e^(2*I*d*x + 2*I*c) - 1)*e^(I*d*x + I*c))*e^(-6*I*d*x - 6
*I*c)/(a^3*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)**(1/2)/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sqrt{\cot \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(1/((I*a*tan(d*x + c) + a)^(5/2)*sqrt(cot(d*x + c))), x)